AdstockTransformation#
- class pymc_marketing.mmm.components.adstock.AdstockTransformation(l_max=FieldInfo(annotation=NoneType, required=True, description='Maximum lag for the adstock transformation.', metadata=[Gt(gt=0)]), normalize=FieldInfo(annotation=NoneType, required=False, default=True, description='Whether to normalize the adstock values.'), mode=FieldInfo(annotation=NoneType, required=False, default=<ConvMode.After: 'After'>, description='Convolution mode.'), priors=FieldInfo(annotation=NoneType, required=False, default=None, description='Priors for the parameters.'), prefix=FieldInfo(annotation=NoneType, required=False, default=None, description='Prefix for the parameters.'))[source]#
Subclass for all adstock functions.
In order to use a custom saturation function, inherit from this class and define:
function: a function that takes x to adstock xdefault_priors: dictionary with priors for every parameter in function
Consider the predefined subclasses as examples.
Methods
AdstockTransformation.__init__([l_max, ...])AdstockTransformation.apply(x[, dims, idx])Call within a model context.
AdstockTransformation.plot_curve(curve[, ...])Plot curve HDI and samples.
Plot the HDI of the curve.
Plot samples from the curve.
AdstockTransformation.sample_curve(parameters)Sample the adstock transformation given parameters.
AdstockTransformation.sample_prior([coords])Sample the priors for the transformation.
Set the dims for all priors.
Convert the adstock transformation to a dictionary.
Update the priors for a function after initialization.
Attributes
combined_dimsGet the combined dims for all the parameters.
function_priorsGet the priors for the function.
model_configMapping from variable name to prior for the model.
prefixvariable_mappingMapping from parameter name to variable name in the model.
lookup_namedefault_priorsfunction